SNSB Summer Term 2013 Ergodic Theory and Additive Combinatorics Laurențiu Leuștean

01.05.2013

Seminar 2

(S2.1) Let (X,T) be a TDS.

- (i) Any strongly *T*-invariant set is also *T*-invariant.
- (ii) The complement of a strongly T-invariant set is strongly T-invariant.
- (iii) The closure of a *T*-invariant set is also *T*-invariant.
- (iv) The union of any family of (strongly) T-invariant sets is (strongly) T-invariant.
- (v) The intersection of any family of (strongly) T-invariant sets is (strongly) T-invariant.
- (vi) If A is T-invariant, then $T^n(A) \subseteq A$ and $T^n(A)$ is T-invariant for all $n \ge 0$.
- (vii) If A is strongly T-invariant, then $T^n(A) \subseteq A$ and $T^{-n}(A) = A$ for all $n \ge 0$; in particular, $T^{-n}(A)$ is strongly T-invariant for all $n \ge 0$.
- (viii) For any $x \in X$, the forward orbit $\mathcal{O}_+(x)$ of x is the smallest T-invariant set containing x and $\overline{\mathcal{O}}_+(x)$ is the smallest T-invariant closed set containing x.
- *Proof.* (i) By A.0.13.(v).
 - (ii) If $T^{-1}(A) = A$, then $T^{-1}(X \setminus A) = X \setminus T^{-1}(A) = X \setminus A$.
- (iii) If $T(A) \subseteq A$, then $T(\overline{A}) \subseteq \overline{T(A)} \subseteq \overline{A}$, by B.4.2.
- (iv) Let $(A_i)_{i \in I}$ be a family of subsets of X. If $T(A_i) \subseteq A_i$ for all $i \in I$, then

$$T(\bigcup_{i\in I} A_i) = \bigcup_{i\in I} T(A_i) \subseteq \bigcup_{i\in I} A_i.$$

If $T^{-1}(A_i) = A_i$ for all $i \in I$, then

$$T^{-1}(\bigcup_{i\in I}A_i) = \bigcup_{i\in I}T^{-1}(A_i) = \bigcup_{i\in I}A_i.$$

(v) Let $(A_i)_{i \in I}$ be a family of subsets of X. If $T(A_i) \subseteq A_i$ for all $i \in I$, then

$$T(\bigcap_{i\in I} A_i) \subseteq \bigcap_{i\in I} T(A_i) \subseteq \bigcap_{i\in I} A_i.$$

If $T^{-1}(A_i) = A_i$ for all $i \in I$, then

$$T^{-1}(\bigcap_{i \in I} A_i) = \bigcap_{i \in I} T^{-1}(A_i) = \bigcap_{i \in I} A_i.$$

- (vi) By A.0.13.(i).
- (vii) By (i), A is T-invariant, hence we can apply (vi) to conclude that $T^n(A) \subseteq A$ for all $n \ge 0$. Apply A.0.13.(vi) to obtain that $T^{-n}(A) = A$ for all $n \ge 0$.
- (viii) By Lemma 1.0.3, We have that $T(\mathcal{O}_+(x)) = \mathcal{O}_{>0}(x) \subseteq \mathcal{O}_+(x)$, hence $\mathcal{O}_+(x)$ is *T*-invariant. If *B* is a *T*-invariant set containing *x*, then $T^n x \in T^n(B) \subseteq B$ for all $n \ge 1$. Thus, $\mathcal{O}_+(x) \subseteq B$. By (iii), $\overline{\mathcal{O}}_+(x)$ is also *T*-invariant. Furthermore, if *B* is a closed *T*-invariant set containing *x*, then $\mathcal{O}_+(x) \subseteq B$ and, since *B* is closed, $\overline{\mathcal{O}}_+(x) \subseteq B$.

(S2.2) Let (X, T) be an invertible TDS.

(i) $A \subseteq X$ is strongly *T*-invariant if and only if T(A) = A if and only if *A* is strongly T^{-1} -invariant.

- (ii) The closure of a strongly *T*-invariant set is also strongly *T*-invariant.
- (iii) If $A \subseteq X$ is strongly *T*-invariant, then $T^n(A) = A$ for all $n \in \mathbb{Z}$; in particular, $T^n(A)$ is strongly *T*-invariant for all $n \in \mathbb{Z}$.
- (iv) For any $x \in X$, the orbit $\mathcal{O}(x)$ of x is the smallest strongly T-invariant set containing x and $\overline{\mathcal{O}}(x)$ is the smallest strongly T-invariant closed set containing x.
- (v) For any nonempty open set U of X, $\bigcup_{n \in \mathbb{Z}} T^n(U)$ is a nonempty open strongly T-invariant set and $X \setminus \bigcup_{n \in \mathbb{Z}} T^n(U)$ is a closed strongly T-invariant proper subset of X.
- Proof. (i) Using the fact that T is a homeomorphism, we get that $A \subseteq X$ is strongly T-invariantif and only if $T^{-1}(A) = A$ if and only if $T(T^{-1}(A)) = T(A)$ if and only if A = T(A).
 - (ii) Let A be strongly T-invariant. By (i) and B.4.6, we get that $T(\overline{A}) = \overline{T(A)} = \overline{A}$, hence \overline{A} is also strongly T-invariant, by (i).

- (iii) Apply (i) and A.0.14.(ii).
- (iv)

$$T(\mathcal{O}(x)) = T\left(\bigcup_{n\in\mathbb{Z}}T^nx\right) = \bigcup_{n\in\mathbb{Z}}T^{n+1}x = \mathcal{O}(x),$$

so $\mathcal{O}(x)$ is strongly *T*-invariant. If *B* is a strongly *T*-invariant set containing *x*, then for all $n \in \mathbb{Z}$, $T^n x \in T^n(B) = B$, by (iii). Thus, $\mathcal{O}(x) \subseteq B$.

By (ii), $\overline{\mathcal{O}}(x)$ is also strongly *T*-invariant. Furthermore, if *B* is a closed strongly *T*-invariantset containing *x*, then $\mathcal{O}(x) \subseteq B$ and, since *B* is closed, $\overline{\mathcal{O}}(x) \subseteq B$.

(v) Let $A := \bigcup_{n \in \mathbb{Z}} T^n(U)$. Then A is open, since T^n is an open mapping for all $n \in \mathbb{Z}$, and A is nonempty, since $\emptyset \neq U = T^0(U) \subseteq A$. Furthermore,

$$T(A) = T\left(\bigcup_{n \in \mathbb{Z}} T^n(U)\right) = \bigcup_{n \in \mathbb{Z}} T^{n+1}(U) = A.$$

Finally, $X \setminus A \neq X$ is closed and strongly *T*-invariant, as a complement of an open strongly *T*-invariant set).

(S2.3) Let (X, T) be a TDS and $x \in X$. Then

- (i) x is a forward transitive point if and only if $x \in \bigcup_{n \ge 0} T^{-n}(U)$ for every nonempty open subset U of X.
- (ii) Assume that (X,T) is invertible. Then x is a transitive point if and only if $x \in \bigcup_{n \in \mathbb{Z}} T^n(U)$ for every nonempty open subset U of X.
- *Proof.* (i) Applying B.1.5.(ii) and Lemma 1.0.3.(ii), we get that x is forward transitive if and only if $\mathcal{O}_+(x) \cap U \neq \emptyset$ for any nonempty open set U iff $x \in \bigcup_{n \ge 0} T^{-n}(U)$ for any nonempty open set U.
 - (ii) Similarly, using Lemma 1.0.3.(iii).

(S2.4) Let (X,T) be a TDS with X metrizable and $(U_n)_{n\geq 1}$ be a countable basis of X. Then

- (i) $\{x \in X \mid \overline{\mathcal{O}}_+(x) = X\} = \bigcap_{n \ge 1} \bigcup_{k \ge 0} T^{-k}(U_n).$
- (ii) If (X,T) is invertible, then $\{x \in X \mid \overline{\mathcal{O}}(x) = X\} = \bigcap_{n \ge 1} \bigcup_{k \in \mathbb{Z}} T^k(U_n).$

Proof. As the proof of the above lemma, using B.1.5.(iii).

(S2.5) Let (X, T) be a TDS. The following are equivalent:

- (i) If U is a nonempty open subset of X such that T(U) = U, then U is dense.
- (ii) If $E \neq X$ is a proper closed subset of X such that T(E) = E, then E is nowhere dense.

Proof. Take $U := X \setminus E$. Then U is nonempty iff E is proper, U is open iff E is closed, U is dense in X iff E is nowhere dense, by B.1.5.(iv). Furthermore, since T is bijective, $T(U) = T(X \setminus E) = X \setminus T(E)$, hence, T(U) = U iff T(E) = E.